
International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 762
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Design and characterization of a Fully
Associative Cache Controller IP core

 Deepa C, Nandakumar R.

Abstract— Cache memory is a small, but fast memory that is used to store data that have been accessed recently and are likely to be
referenced again soon in the future. Cache controller responds to the read and write requests issued by the processor. In this paper an
architecture design of Cache controller core for fully set associative cache with write-through policy is described. This paper proposes to address
detailed investigations about the different categories of cache memory, deriving a suitable behavioral model for custom controller, for targeting a
cache memory.

Index Terms—Cache controller, CAM, Finite State Machine, Fully set associative cache, IP core, RTL, Verilog.

—————————— ——————————

1 INTRODUCTION

RESENTLY the speed of the memories is not able to
cope up with the speed of the processors. As a result of

this a cache memory becomes an integral part of the
memory hierarchy. Cache is a small, fast array of memory
placed between the processor and main memory. Cache
consists of a fast memory that is typically made from
SRAM and a controller. This controller section of the cache
is responsible for performing all the logical
operations of the cache. Cache controller is the brain
behind cache. Internally it has a finite state machine that
generates the control signals needed for the operation of
cache memory and main memory.
 The proposed controller is targeted for a fully
associative cache memory having a cache size of 512
KB. Both the address and data widths are 32 bit. The
address issued by the processor is of 32 bits. The write
policy used is write through, i.e., data is written
synchronously to the cache memory as well as to the main
memory. On write misses, write no allocate policy is used,
i.e., data is written to the main memory only. On read
misses data is written to the cache. Cyclic replacement
policy is used. Section 2 deals with the architecture
of the proposed controller; the principle of operation of the
controller is covered in section 3; simulation results are
shown in section 4 and synthesis results are given in
section 5. Hardware test results are given in section 6.
Section 7 gives the conclusion.

2 PROPOSED CONTROLLER ARCHITECTURE

2.1 Introduction
The proposed cache controller is designed to work with
custom fully set associative cache memory. It has a host
interface on one side and cache memory and main memory

on the other side. The controller consists of control logic,
built in replacement block, CAM and an encoder.

2.2 Block Diagram
The block diagram of proposed Cache controller is
shown in Figure 1.

Figure 1: Block diagram of cache controller

2.3 Input-Output Description
The input output diagram of controller is shown in Figure
2. The output signals from the cache controller are given as
input to the cache memory and main memory. All the pins

P

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 763
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

in the pin diagram are described in Table 1. Direction and
description of the pins are also given.

Figure 2: Input output diagram of cache controller

PIN DIRECTION DESCRIPTION
clk Input Input clock to the

controller
M_Address Input Address issued by the

processor
M_wrdata Input Data issued by the

processor during write
operation

M_write Input Input to the controller to
perform write operation

M_read Input Input to the controller to
perform read operation

S_rddata Input Data that is read from the
slave

S_wait Input Signal to the controller
indicating that the slave is
busy

tag Input Tag address given to the
cache controller

S_wrdata Output Data that is written to the
slave

M_wait Output Signal indicating that the
master is busy

cache_hit Output Signal indicating whether
the access is a hit or miss

S_read Output Signal to the slave
indicating read operation

S_write Output Signal to the slave
indicating write operation

M_rddata Output Data that is given to the
processor after read
operation

S_Address Output Address issued to the
slave

Table 1: Pin description of cache controller

2.4 Architecture Detailed
Controller has a host interface on one side and cache
memory and main memory on the other side. The
controller architecture consists of Control logic, built in
replacement block, CAM and an encoder. Detailed
explanations of each of the blocks are given below.

1. Control logic:
Control logic generates the control signals needed to the
memory, registers, CAM and replacement block. The
control signals generated by the control unit are S_write
and S_read and M_wait. S_write is the control signal
given to the slave unit indicating slave write and S_read is
the signal indicating Slave read. M_wait indicates that the
master unit is busy.

2. Replacement Block:
Replacement policy used in the controller is counter based
replacement policy. The counter is implemented using the
built in lpm_counter megafunction. The counter based
replacement policy provides a simple and effective way to
select data to be evicted from the cache. The counter always
points at the next value, to be evicted in the cache. The
counter increments with each new value cached. The
values that enter the cache least recently are evicted first.
This policy does not take into account how many times a
piece of data was accessed. However it requires simpler
circuitry, which reduces silicon penalty.

3. Encoder:
The encoder is the largest block of logic and is within the
system’s critical path. The size of the encoder is determined
by the depth of the cache, Increases in cache depth result in
a longer critical path and smaller fmax. So an efficient
implementation of encoder is required to overcome this
reduction in fmax.

4. CAM:
A cache must search through a number of tags so as to find
a match this process of searching through the tags can be
done by using a Content Addressable Memory (CAM). A
CAM is the inverse of RAM in the sense, while RAM is
given an address as input and outputs the data stored at
that address, a CAM receives data and returns the address
where the data is stored, or indicates that the data is not
currently in the CAM. This makes CAMs ideal for
searching through tags and detecting cache hits. The

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 764
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

pattern given to the CAM is tag and the address returned
by the CAM is the position of data in the Data RAM.

5. Registers:
Registers are implemented using the built in flip flops of
the memory blocks. The altsyncram megafunction enables
users to specify whether these registers should be used or
not. If the registers are not needed they can be bypassed.
This optimization is to provide a latency of two or three
cycles.

3 PRINCIPLE OF OPERATION
The different operations of the memory are Read operation
and Write operation. The different stages of the cache
controller for read and write operation can be explained by
a Finite State Machine (FSM). FSM for read operation and
write operation are shown in Figure 3 and Figure 4
respectively.

Figure 3: FSM for read operation

When both M_read and M_write inputs are active low,
controller remains in the IDLE state, i.e., there is no
memory access, underway. When M_read or M_write is
high, controller interprets it as a valid request. Then the
control moves to the TAGCOMPARE state to see if the tags
match. If the tags match i.e., it is a cache hit and M_read is
high, control moves to the READDATA state. In the
READDATA state data is read from the cache memory.
After completion of cache memory read control moves to
the IDLE state.
If the tags don’t match and M_read is high, the control
moves to the MEMREAD state to access main memory.
During this state data is read from the main memory. After
completion of main memory read, control moves to the
WRITE state. In this state data is written to the cache
memory. Data read from the main memory is provided to
the processor and control moves to the IDLE state.

Figure 4: FSM for write operation

When both M_read and M_write inputs are active low,
controller remains in the IDLE state, i.e., there is no
memory access, underway. When M_read or M_write is
high, controller interprets it as a valid request. Then the
control moves to the TAGCOMPARE state to see if the tags
match. If the tags match i.e., it is a cache hit and M_write is
high, control moves to the WRITE state. In the WRITE state
data is written to the cache memory. After completion of
cache memory write control moves to the WRITE2 state,
i.e., data is written to the main memory as well. After
completion of main memory write control moves to the
IDLE state.
If the tags don’t match and M_write is high, the control
moves to the WRITE2 state to initiate write-through to
main memory. During this state data is read from the main
memory.

4 SIMULATION RESULTS

Simulation of cache controller IP core was done using
ModelSim SE®. Simulation results for read operation are
shown in Figure 5 and 6.

Figure 5: Read operation (Hit)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 765
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Figure 6: Read operation (Miss)

Simulation results for write operation are shown in Figure
7 and 8.

Figure 7: Write operation (Hit)

Figure 8: Write operation (Miss)

5 SYNTHESIS RESULTS

Design was synthesized by using Altera Quartus® II
Design suite.

5.1 Resource Utilization Report:
Resource utilization report is given in Table 2.

Table 2: Resource utilization report

5.2 Power Analysis Report:
Quartus II PowerPlay Power Analyzer® was used to
perform power analysis.

Table 3: Power analysis report

6 HARDWARE TEST RESULTS

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 766
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The SignalTap II ® Logic Analyzer was used for on chip
debugging of the IP core. Signaltap II ® Logic Analyzer
captures and displays real time signal behavior.

Figure 9: Idle condition

Figure 10: Write operation (Hit)

Figure 11: Write operation (Miss)

Figure 12: Read operation (Hit)

Figure 13: Read operation (Miss)

7 CONCLUSION

The architecture of a custom controller with counter based
replacement policy for a fully set associative cache memory
was designed, prototyped and characterized for resource
utilization and power consumption. The controller serves
as a reliable interface to the cache memory as well as to the
main memory. The proposed design was tested by
implementing the design on Altera® FPGA development
board having EP2C20F484C7 FPGA belonging to
Cyclone™ family.

REFERENCES
[1] Altera Corporation. “Altera Stratix FPGA Family Data
Sheet”.December2002,http://www.altera.com/literature/ds/ds_st
x.pdf.
[2] John L. Hennessy, Davis A. Patterson. Computer
architecture: a quantitative approach (2nd edition), Morgan
Kaufmann, January 1996.
[3] Vincent P. Heuring and Harry F. Jordan, Computer Systems
Design and Architecture, second edition, Prentice Hall, Upper
saddle river, New Jersey, 2004.
[4] A. J. Smith, “Cache memories,” Computing Surveys, vol.
14, no. 3, pp. 473-530, 1982.
[5] A. J. Smith, “Cache memory design: An evolving art,”IEEE
Spectrum,vol. 24, no. 12, pp. 40-44, Dec. 1987.
 [6] J. P. Hayes, Computer Architecture and Organization,
3rd ed., McGraw-Hill Book Company, 1998
[7] J. E. Smith and J. R. Goodman,_Instruction cache
replacement polices and organizations,_IEEE Transactions on
Computers, Vol. C-34, No. 3, 1985, pp. 234-241.
[8] L. Colagiovanni and A. Shaout, “ Cache memory
replacement policy for a uniprocessor system, ” IEE Electronic
Letters, 1990, Vol. 26, No. 8, pp. 509-510.
[9] Vipin S. Bhure , Praveen R. Chakole, “Design of Cache
Controller for Multi-core Processor System” international
Journal of Electronics and Computer Science Engineering,
ISSN: 2277-1956.
[10] Deepa C, Nandakumar R, “Design and characterization of
two way set associative cache controller IP core” International
Journal of Electronics and Communication Technology, Vol.4
,Issue2, April-June 2013, pp. 357-359.

IJSER

http://www.ijser.org/
http://www.altera.com/literature/ds/ds_stx.pdf
http://www.altera.com/literature/ds/ds_stx.pdf

	1 Introduction
	2.1 Introduction
	2.2 Block Diagram

	The block diagram of proposed Cache controller is shown in Figure 1.
	3 PRINCIPLE OF OPERATION
	4 SIMULATION RESULTS
	5 SYNTHESIS RESULTS

